Jump to Content

Many-Shot In-Context Learning

Published
View publication

Abstract

Large language models (LLMs) excel at few-shot in-context learning (ICL) – learning from a few examples provided in context at inference, without any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples – the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated outputs. To mitigate this limitation, we explore two new settings: “Reinforced ICL” and “Unsupervised ICL”. Reinforced ICL uses model-generated chain-of-thought rationales in place of human rationales. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific inputs. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases and can learn high-dimensional functions with numerical inputs. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream performance.

Authors

Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer Abbas, Azade Nova, John D. Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra Faust, Hugo Larochelle

Venue

arXiv